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The second European Mechanics Collogquium, on the subject of three-dimensional
boundary layers, was held at Liverpool University from 4 to 7 January 1966 and
was attended by thirty-eight people closely associated with current work in this
field.

The meeting was opened by an introductory review by J. C. Cooke, who suc-
cessfully sought to provoke discussion by emphasizing areas of apparent agree-
ment and disagreement. The discussions which followed were based on a series of
contributions by participants in the Colloquium, and covered the following topics:

(1) Laminar boundary layers.

(2) Three-dimensional perturbations of two-dimensional turbulent boundary

layers.
(3) Corner and secondary flows.
(4) Boundary layers associated with flow past obstacles.
(56) Flow over delta wings.
(6) Separation.
(7) Flow over rotating surfaces.
(8) Heat and mass transfer.

(9) Miscellaneous toypics.

In all these cases, the emphasis was on the three-dimensional nature of the
flow, and in this report the discussions are summarized under these headings.

Introduction

The main feature of a three-dimensional boundary layer which does not appear
in two dimensions is ‘cross flow’ or ‘secondary flow’ (figure 1a). As the main
stream travels over the body the streamlines are in general curved (though the
body may be plane) and this means that there is a pressure gradient normal to the
streamlines (balancing ‘centrifugal force’) as well as a gradient along them. In
accordance with the usual boundary-layer approximation, the pressure is taken
to be constant across the boundary layer.

However, the fluid velocity decreases as the wall is approached and conse-
quently the centrifugal force acting against the pressure gradient is reduced near
to the wall. This causes the development of an inward component of flow (i.e. to-
wards the centre of curvature). Hence the resultant direction of flow is now
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different from that of the main stream. In practice, the angle between the two
directions (which is zero outside) usually increases to a maximum at the wall
itself (figure 1b). However, the curvature of an external streamline may change
sign along its length. The effect of the consequent change in direction of the
normal pressure gradient is first felt near the wall and the cross-flow first changes
its sign there. The change gradually spreads outwards until ultimately the whole
of the cross-flow has changed its direction. There is an intermediate position
where the cross-flow is in opposite directions at different levels in the boundary
layer, and the corresponding cross-flow velocity profiles have been given the
name ‘cross-over’ profiles (figure 2). The angle between the flow directions is
seldom large, perhaps not more than 15° in ordinary situations; although it may
rise to a much larger value as separation is approached, the rise is fairly abrupt.
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Ficure 1(a). Cross-flow profile. Fiaure 1(d). Cross-flow angle.

The varying direction of flow at different levels leads to another new feature in
three-dimensional boundary layers. The effect of some change along a line normal
to a point P on the surface is now spread over a whole growing area of the surface
downstream of P. There is in fact a whole family of streamlines issuing in different
directions at different levels from P and the space covered by all of these is
affected by conditions at P. This leads to difficulties which have so far been
avoided by considering quasi two-dimensional flows (swept wings, conical flows,
flow over rotating axisymmetric bodies), i.e. flows with similarity in some sense.
Fortunately cross-flows are usually small in turbulent flow (except perhaps near
to separation) so it is to be hoped that the effects due to this feature may not be of
too great importance in such a flow.

Owing to the curvature of the external streamlines and the consequent changes
in the direction of the main stream it has become almost universal to use a stream-
line co-ordinate system in which the co-ordinate curves on the surface are the
projections of the external streamlines and their orthogonal trajectories. We will
denote velocity components in these directions by » and v respectively. With
this system and with an assumption of small cross flow, workers have frequently
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made use of the ‘ Principle of Prevalence’ due to Eichelbrenner & Oudart (1955).
This amounts to assuming that v is so small that it may be ignored in the momen-
tum equation for %, which then becomes uncoupled from the equation for » and
is almost of two-dimensional form except for a term involving streamline con-
vergence or divergence. The equation for v is also simplified by ignoring quadratic
terms in v and its derivatives. This enables some progress in calculation to be
made.

i
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Ficure 2. Cross-over profile.

Nevertheless, especially in turbulent flow, the adoption of a generalized form
of momentum-integral procedure has usually been made. For this some form of
the velocity profiles must be assumed. In turbulent flow there seems to be good
reason to believe that the streamwise profile is close to a two-dimensional form,
agreeing with the law-of-the-wall, and with a determinate wall skin friction, al-
though there is some contrary evidence in the experiments of Smith (1965). It
now seems clear, however, from the work of Head & Cumpsty, and of Hall, that
whilst the assumption as to profile for u is adequate, it is not permissible to omit
the v terms from the equation for . To this extent, therefore, the Principle of
Prevalence appears invalid. As regards the form to be assumed for the cross-flow,
opinions differ, and of those so far used none, except that of Eichelbrenner (1955),
are capable of representing cross-over profiles. Further discussion will be given
later.

Another principle, known as the ‘independence principle’, has often been
quoted in connexion with flow on infinite swept wings. In such a case it can be
shown that the flow in the chordwise direction is independent of the spanwise
flow; this only applies to laminar incompressible flow and may lead to consider-
able error if attempts are made to apply it to turbulent flow.

The notion of a ‘limiting streamline’ is frequently used in discussing three-
dimensional boundary layers. This is the limit of a streamline as the distance
from the wall tends to zero. It is also often called a ‘skin friction’ line since it is
tangent to the direction of resultant skin friction at any point. Oil-flow patterns
on the surface of a wing give an approximate picture of limiting streamlines,
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Separation is another matter which requires different handling from two-
dimensional flow, for which a separation point may be considered to be the point
where skin friction vanishes. In three dimensions there is a separation line, which
is usually defined to be an envelope of limiting streamlines, and along which the
skin friction may remain finite.

1. Laminar boundary layers

There was only a short discussion of the problems of calculating three-
dimensional lJaminar boundary layers. Wuest (1959) gave an account of his work
on similar solutions. For special conditions he found similar solutions which
depend only on one variable. The velocity profiles are then similar on the whole
surface, giving ‘area similarity’. For less restrictive conditions he found solutions
which depend on two variables and in this case the velocity profiles are similar
along lines on which one of the variables is constant (‘line similarity’). The work
is restricted to outer flows which follow simple power laws such as U = Az,
V = By, but the results may be useful for checking more general methods of
calculation. Some cases of this and allied types have been solved by Yohner &
Hansen (1958).

It was pointed out that Raetz (1957) had devised a very general method which
might cover any wall-boundary conditions on temperature and suction, and any
viscosity law. Lewis & Rogers (Bristol University) and Carr & Lindfield (Handley
Page) are in process of programming the method, but so far have only tested it for
incompressible two-dimensional flow. Also Cooke (1965) has succeeded in using a
numerical method to solve problems with three dependent variables, but only
two independent variables, and the method has been applied to flow about cones
and to rotating axi-symmetric flows.

2. Three-dimensional perturbations of two-dimensional turbulent
boundary layers

This section deals with cases where the ‘ Principle of Prevalence’ in some form
has been used. The main difficulty here concerns the type of cross-flow profile to
be used.

Hall and Lewkowicz both presented experimental results which agree with the
principle of prevalence. Lewkowicz’s measurements of the cross-flows, carried
out on a flat plate in a circular bend, also agreed well with Mager’s expression

/U = a(1-2/8)*(u/U),

where a = lim(v/u) (see figure 3).
2—0

Hall’s (1965) experiments were carried out in a supersonic nozzle (M = 1-8) in
which there was a reversal of direction of the boundary-layer cross-flow, and
cross-over profiles occurred in some places. The results do not fit Mager’s (1952)
model—or indeed any other model of the cross-flow which has so far been pro-
posed.

Hornung & Joubert’s (1963) experiments were also mentioned. In these an
established boundary layer was deflected by an obstacle having a circular
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cylindrical nose with a faired tail. The arrangement was somewhat similar to that
of Johnston (1960) and the authors confirmed that Johnston’s triangular polar
plot of the cross-flow was valid for this type of flow (see figure 4). Some analytical
justification for this result was given by Perry & Joubert (1965).
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Figure 4. Johnston’s polar plot.

Head & Cumpsty presented a method of numerical calculation based on the
momentum equations (in streamwise and cross-flow directions), and using an
entrainment equation similar to that used in two-dimensional flow (Head 1958).
Streamwise profiles are represented by Thompson’s two-dimensional family and
cross-flow profiles by Mager’s expression. The results of calculations for flow over
the rear of an infinite swept wing were presented but no comparison with experi-
ment has yet been made.

A somewhat similar method of calculation was presented by Lewkowicz who
used Coles’s (1956) velocity profile in the momentum and energy equations for
the streamwise flow, together with Ludwieg-Tillmann law. He also used the
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Mager expression in the cross-flow momentum integral, and obtained an exact
analytical solution for the boundary layer in a curved duct with the external free
stream in a state of radial equilibrium. In the discussion both Rotta and Walz
emphasized their belief that the dissipation integral is dependent on the history
of the boundary layer, and their suspicion of any form of expression which relates
it only to local parameters.

It became clear that there is a need for a more reliable method of calculation.
Cooke suggested the possibility of developing A. M. O. Smith’s (unpublished)
method for two-dimensional layers. This involves the use of an assumed eddy
viscosity varying across the layer and then the application of laminar methods
(Smith & Clutter 1963). By the principle of prevalence we may take the same
formula for eddy viscosity as in two dimensions as far as the streamwise flow is
concerned. Perhaps the same eddy viscosity for the cross-flow may also be taken,
as Banks & Gadd (1962) assumed when dealing with ship’s propellers.

3. Corner and secondary flows

The calculation of the flow along a corner has proved very difficult. It was dis-
cussed by Moore (1956) who pointed out that the effect of a corner is likely to be
felt only at distances of the order of one boundary-layer thickness away from the
corner and suggested that there may be a pair of vortices associated with such
flows. Indeed such vortices have been observed in turbulent flows but not so far
in laminar flows.

Gersten (1959) presented work on the flow in a corner, under zero and finite
adverse pressure gradients. He gave results for the momentum and displacement
deficits due to the corner as a function of Reynolds number, and showed that
separation was reached earlier in a corner than in a two-dimensional flow. The
transition point moved nearer to the leading edge as the corner was approached,
but then moved downstream again very near to the corner. In his theoretical
work on laminar flow Gersten developed an extension of Carrier’s (1946) method.
Horlock quoted the analytical work of Pearson (1958) and Louis (1958), who
obtained the streamwise vorticity near the corner and the asymptotic cross-flow
velocity some distance from the corner. He gave a solution in which the momen-
tum equation was applied to show that the distance from the corner where the
asymptotic cross flow was obtained was about 1 times the boundary-layer thick-
ness. A more rigorous treatment of the corner flow by Rubin (1965) is to be
published in this Journal.

Horlock and Norbury both presented results giving the velocity distribution in
turbulent flow in corners. Norbury (1959) mentioned some diffuser experiments
in which reversal of the streamwise vorticity occurred as secondary flows arising
from shear flow curvature were replaced by secondary flows resulting from
boundary-layer interference.

Fernholz described the flow in a curved wall jet bounded by plane side walls
giving a passage of aspect ratio unity. Strong secondary flows were generated,
producing convergence of the flow on the curved wall towards the centre line.
Nevertheless, measurements of velocity profiles and skin friction (by surface
Pitot tube) showed that the boundary layer on the centre line agreed well with
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the universal inner law. This result was also obtained for higher aspect ratios,
and appeared to be generally true, including presumably the two-dimensional
boundary layer on a curved wall.

Gadd presented experimental results to show that the boundary-layer interfer-
ence effect at the edge of a plate extended some four boundary-layer thicknesses
in from the edge.

4. Boundary layers associated with flow past obstacles

The type of flow dealt with in this section can be exemplified by consideration
of the flow along a flat plate on which stands a cylinder with its generators normal
to the plate. The adverse pressure gradient induced by the cylinder leads to
separation from the flat plate upstream of the cylinder.

Sutton showed a remarkable series of photographs illustrating this. The
separated shear layer is observed to roll up into one or more concentrated horse-
shoe vortices which trail downstream on either side of the cylinder. In addition
the smoke showed the formation of three or more vortices ahead of the cylinder.
The corresponding flows for a number of swept cylinders were also described.

Gersten (1959) reported a similar experiment in which pressure distributions
on the wall were observed, and a marked depression clearly located this vortex.
Gersten pointed out that an attempt to calculate the upstream separation point
by two-dimensional methods had met with failure. A useful account of much of
the work has been given by Steinheuer (1965). Fernholz presented the results of
some measurements of skin friction distribution in the vicinity of the separating
flow upstream of a nearly two-dimensional step. Preston introduced a discussion
on the difficulties of observation in three-dimensional flows, and showed stereo-
photographs of the ‘dust devil’ vortices observed by Norbury at the entry to a
duct located near a plane wall.

5. Flow over delta wings

When delta wings are placed at incidence in a stream the flow over the lower
surface will separate from the leading edges and the separated flow forms vortex
sheets which roll up into the familiar pair of coils. The flow round the outside of
these sheets attaches itself to the upper surface of the wing along a pair of attach-
ment lines which may coincide into one along the centre line of the wing. The
attached fluid flows outwards and inwards from this line. That which flows out-
wards usually separates again forming a ‘secondary separation line’ (the first
such line being the leading edge itself). There is then another pair of coiled vortex
sheets; even tertiary separation lines have been observed.

Gregory & Love (1965) presented the results of extensive flow visualization
experiments on the flow over a slender delta wing. The oil flow patterns showed
separate regions of laminar and turbulent flow, lines of primary and secondary
separation and attachment, and wedges of turbulence springing from the leading
edges and from points on the surface. The state of the flow has been found to
depend crucially on the boundary-layer behaviour near to the apex, where the
flow has some resemblance to the flow past a stub circular cylinder projecting
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from a flat plate. In the discussion Preston commented on the smoothness of the
flow reattachment and Gregory pointed outthat the attachingairisnotboundary-
layer air, as it usually is in two-dimensional reattachment, but air that has come
from the mainstream flowing round the outside of the leading edge vortices.

East presented measurements of static pressure and skin friction on a delta
wing having a diamond-shaped cross-section.

6. Separation

The session on separation was introduced by Brown (1965) who pointed out
that the two-dimensional criterion of separation——skin friction becoming zero—
is invalid in three-dimensional flow. She discussed the consequence of regarding
the separation as the envelope of the limiting streamlines, stating that for certain
quasi-two-dimensional flows it is possible to determine whether or not the line
is a line of singularities, but that for general three-dimensional flows this question
remains unresolved. Discussion centred on the definition of separation line, it
being generally agreed that it is best defined as a line dividing flow which has
come from different zones, leaving open the question whether the surface flow is _
tangential to it.

Experimental results were presented on flows approaching separation, by
Wakhaloo; on separated flows, by Schuh; and on reattaching flows, by Horton.
Wakhaloo had extended Lewkowicz’s experiments, showing that the Mager cross-
flow model was still valid in regions of strong adverse pressure gradient, where
there were large wake components in the streamwise velocity profiles. Schuh
& Petterson reported on the flow in a 5° curved diffuser, followed by a straight
pipe. The diffuser flow consisted of a potential core surrounded by a turbulent
boundary layer in which secondary flows were induced by the curvature. Separa-
tion occurred on the inside of the bend, with a reverse flow confined to a local
bubble. The bubble was closed by reattachment resulting from transverse en-
trainment from the non-separated boundary layer. Schuh was surprised to find
that the secondary flows persisted strongly in the downstream flow, but it was
reported in discussion that in other experiments (e.g. Percival 1958) similarly
persistent secondary flows were observed.

Horton described some experiments on a ‘swept’ separation bubble, at a sweep
angle of about 26°. It appears that long and short bubbles can exist just as in two-
dimensional flow, and with similar criteria for their occurrence. Strong cross flows
were present in the separated shear layer which became turbulent and then re-
attached. In this region the strong adverse pressure gradient caused rapid de-
velopment of cross-flow profiles. The independence principle (i.e. independence
of the streamwise flow and the cross flow) appeared to hold in the laminar part
of the layer up to transition, but not thereafter.

7. Flow over rotating surfaces

The session on boundary layers associated with rotating bodies ranged over a
wide field. Stewartson presented an analysis of the flow between two spheres,
both rotating but with angular velocities slightly different. When the Reynolds



Three-dimensional boundary layers 377

number is high the flow outside the co-axial cylinder circumscribing the inner
sphere is in solid body rotation with the angular velocity of the outer sphere, with
a shear layer separating it from the inner fluid.

The shear layer is complicated in structure, having two outer layers (of thick-
ness ~ R;% and R-%) sandwiching an inner layer of thickness ~ R;%. Inside the
shear layer the fluid rotates with an angular velocity intermediate between the
angular velocities of the two spheres, and the shear layer interacts with the
boundary layer (of thickness ~ R; %) on the outer sphere.

Gersten reported on published work by Parr (1964) in which the laminar and
turbulent boundary layers on rotating axi-symmetric bodies had been measured,
in accelerating and decelerating flow. This work was carried out to check the
theoretical work by Schlichting (1953) and Steinheuer (1965). An interesting
experimental fact is that at moderate values of the rotation parameter v, /U, the
circumferential velocity component v in the boundary layer is related to the
meridional component » by the Steinheuer equation

vjv,, = 1—ufU.

Sutton pointed out that this equation was valid for laminar flow with zero-
pressure gradient, and could be obtained simply by changing from stationary to
moving co-ordinates. The equation was made the basis of an approximate calcula-
tion method for laminar or turbulent flows, which gave good agreement with
experiment. Gersten pointed out that the locations of transition and separation
move upstream with increasing values of the rotation parameter, and remarked
that the cross flows decayed only slowly on the fixed cylinder downstream of the
rotating body.

Smith reported on his two-dimensional calculations of boundary-layer de-
velopment up to separation on turbine and compressor blades, using several
methods of calculation. The standard methods yielded different results, that of
Head (1958) giving results considerably different from all the others. The method
of Walz (1956) was not tried. The purpose of the calculations was to obtain
optimum blade pressure distributions, but Gersten felt that true optimization
was impossible because of the number of parameters involved. He also suggested
that the disparity in results might be partly due to the difficulty of fixing a
criterion for separation, and that calculations of losses would give more consistent
results. Preston raised the question of radial boundary-layer drift but Horlock
felt that in unseparated flow the evidence—both theoretical and experimental—
for three-dimensional effects on turbine and compressor blades was scanty, and
that two-dimensional calculations were probably good enough.

8. Heat and mass transfer

In a final session on heat transfer associated with three-dimensional flows
Brun, Diep & Le Fur (1965) reported some experiments on heat and mass transfer
with swept circular cylindersin a flow at M = 2-42. The analogy between Nusselt
and Sherwood numbers was demonstrated. Of particular interest in the mass-
transfer experiments were the grooves produced in the sublimated cylinders by
vortices directed along the streamlines, both in laminar and turbulent flow. In
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laminar flow this was due to sweep instability just before transition, and the
authors believed that in the turbulent case a type of Gortler instability was
involved.

Michel & Duc-Lam (1964) used the principle of prevalence, along with integral
treatments of the equations of momentum and energy flux, in some calculations
of skin friction and heat transfer. They predicted the turbulent skin friction on
delta wings as a function of sweep and incidence angles, and calculated heat trans-
fer coefficients on yawed cylinders. For such determinations, with small cross
flows, it may not be necessary to worry about the cross-flow profiles, except near
separation. Comparison of theory and experiment showed that the theory gave
at least the right order of magnitude. Michel also reported on experiments in
which the laminar heat transfer coefficient on the leading edges of hypersonic
wings was shown to be strongly influenced by shock-wave curvature.

9. Miscellaneous topics

There were some papers which could not strictly be said to deal with three-
dimensional boundary layers, but nevertheless may well have some application.
Thus Schultz-Grunow (1965) dealt with laminar boundary layers on curved walls,
solving Murphy’s boundary-layer equations to obtain solutions to the second
order in R; ¥ for the case where the flow is similar.

Rotta dealt with the effect of curved walls on the intensity of turbulence,
which is increased when the wall is concave and decreased when it is convex, the
effect increasing with increasing Mach number. Corresponding extra terms were
included in the energy equation, and velocity distributions were calculated on the
basis of an equilibrium between the rates of turbulence production and viscous
dissipation. These distributions were in qualitative agreement with experimental
observations, and gave a new law of the wall, merging into the usual one near to
the wall but differing in the outer part of the logarithmic region, the divergence
depending on the radius of curvature (including its sign) and the ‘friction Mach
number’ M, = u, ja.

Pichal considered the influence of mainstream turbulence (generated by
oscillating vanes) on a two-dimensional turbulent boundary layer. He found a
large effect on the shear stress profile; in particular it did not go to zero at the
edge of the boundary layer but passed through a minimum value in that neigh-
bourhood. Preston pointed out that the finite value of shear stress at the edge of
the boundary layer was associated with a streamwise variation of turbulence.
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